α7 helix region of αI domain is crucial for integrin binding to endoplasmic reticulum chaperone gp96: a potential therapeutic target for cancer metastasis.

نویسندگان

  • Feng Hong
  • Bei Liu
  • Gabriela Chiosis
  • Daniel T Gewirth
  • Zihai Li
چکیده

Integrins play important roles in regulating a diverse array of cellular functions crucial to the initiation, progression, and metastasis of tumors. Previous studies have shown that a majority of integrins are folded by the endoplasmic reticulum chaperone gp96. Here, we demonstrate that the dimerization of integrin αL and β2 is highly dependent on gp96. The αI domain (AID), a ligand binding domain shared by seven integrin α-subunits, is a critical region for integrin binding to gp96. Deletion of AID significantly reduced the interaction between integrin αL and gp96. Overexpression of AID intracellularly decreased surface expression of gp96 clients (integrins and Toll-like receptors) and cancer cell invasion. The α7 helix region is crucial for AID binding to gp96. A cell-permeable α7 helix peptide competitively inhibited the interaction between gp96 and integrins and blocked cell invasion. Thus, targeting the binding site of α7 helix of AID on gp96 is potentially a new strategy for treatment of cancer metastasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blockage of Conformational Changes of Heat Shock Protein gp96 on Cell Membrane by a α-Helix Peptide Inhibits HER2 Dimerization and Signaling in Breast Cancer

Cell membrane translocation of heat shock protein gp96 from the endoplasmic reticulum has been observed in multiple tumors and is associated with tumor malignancy. However, the cancer-intrinsic function and the related mechanism of cell membrane gp96 as a pro-oncogenic chaperone remain further elucidated. In this study, we found that inhibition of gp96 intramolecular conformational changes by a...

متن کامل

Endoplasmic reticulum heat shock protein gp96 maintains liver homeostasis and promotes hepatocellular carcinogenesis.

BACKGROUND & AIMS gp96, or grp94, is an endoplasmic reticulum (ER)-localized heat shock protein 90 paralog that acts as a protein chaperone and plays an important role for example in ER homeostasis, ER stress, Wnt and integrin signaling, and calcium homeostasis, which are vital processes in oncogenesis. However, the cancer-intrinsic function of gp96 remains controversial. METHODS We studied t...

متن کامل

The molecular chaperone gp96/GRP94 interacts with Toll-like receptors and integrins via its C-terminal hydrophobic domain.

The structural basis for molecular chaperones to discern misfolded proteins has long been an enigma. As the endoplasmic reticulum paralogue of the cytosolic HSP90, gp96 (GRP94, HSP90b1) is an essential molecular chaperone for Toll-like receptors (TLRs) and integrins. However, little is known about its client-binding domain (CBD). Herein, we provide genetic and biochemical evidence to definitive...

متن کامل

Cancer Therapy: Preclinical Molecular Chaperone gp96 Is a Novel Therapeutic Target of Multiple Myeloma

Purpose: gp96 (grp94) is a key downstream chaperone in the endoplasmic reticulum (ER) to mediate unfolded protein response (UPR) and the pathogenesis of multiple myeloma is closely linked to dysregulated UPR. In this study, we aimed to determine the roles of gp96 in the initiation and progression of multiple myeloma in vivo and in vitro. Experimental Design: We generated a mouse model with over...

متن کامل

Molecular chaperone gp96 is a novel therapeutic target of multiple myeloma.

PURPOSE gp96 (grp94) is a key downstream chaperone in the endoplasmic reticulum (ER) to mediate unfolded protein response (UPR) and the pathogenesis of multiple myeloma is closely linked to dysregulated UPR. In this study, we aimed to determine the roles of gp96 in the initiation and progression of multiple myeloma in vivo and in vitro. EXPERIMENTAL DESIGN We generated a mouse model with over...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 288 25  شماره 

صفحات  -

تاریخ انتشار 2013